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Ingegneria delle Telecomunicazioni
Satellite Communications

8. Let it Snow— Atmospheric Impairments

Marco Luise
marco.luise@unipi.it
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Atmospheric Phenomena

e Absorption: A reduction in the amplitude (field strength) of a radiowave caused by
an irreversible conversion of energy from the radiowave to matter in the
propagation path.

e Scattering: A process in which the energy of a radiowave is dispersed in direction
due to interaction with inhomogeneities in the propagation medium.

e Refraction: A change in the direction of propagation of a radiowave resulting from
the spatial variation of refractive index of the medium.

e Diffraction: A change in the direction of propagation of a radiowave resulting from
the presence of an obstacle, a restricted aperture, or other object in the medium.

e Multipath: The propagation condition that results in a transmitted radiowave
reaching the receiving antenna by two or more propagation paths. Multipath can
result from refractive index irregularities in the troposphere or ionosphere, or
fromstructural and terrain scattering on the Earth’s surface.

e Scintillation: Rapid fluctuations of the amplitude and the phase of a radiowave
caused by small-scale irregularities in the transmission path (or paths) with time.

e Fading/Shadowing: The variation of the amplitude (field strength) of a radiowave
caused by changes in the transmission path (or paths) with time.
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Origin of Propagation Impairments

e Major Effects coming from

— the troposphere, extending from the
ground to an altitude of 15 km

e Major effects close to the IONOSPHERE
(aurora)
ground
— The ionosphere, situated between - MESOSPHERE
70 and 1000 km
e Major effect at 400km OZONE LAYER

e Strongly different on different
frequency bands

e Not fully predictable
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Atmospheric Attenuation

e ITU-R gives recommendations about how to compute the atmospheric
attenuation in link budget and system design, and provides map of (average)
values for different regions of the world

— Atmospheric gases attenuation in dB (ITU-R P.676 Annex 2 )
— Rain attenuation in dB (ITU-R P.618)

— Clouds attenuation in dB (ITU-R P. 840)

— Scintillation in dB (ITU-R P.618-8)

e The Recommendations rely on a set of publicly available data
e Rain intensity in dB (ITU digital maps)
e Wet term of refraction co-index (ITU digital maps)
e Rain height (ITU digital maps)
e Total Columnar content (ITU digital maps)
e Water vapor content (ITU digital maps)
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e Temperature (ITU digital maps)
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Attenuation by Rain

The attenuation is strongly dependent on the carrier frequency

— |t can be predicted via physical models as a function of the rain rate r
in mm/h and of the path /,traveled by the radio wave in the rain:

L =ar’l,(dB)

rain=r e hg
— 7.(dB/km) depends on the rain rate as
y,=ar’
(a and b temperature- and 1 /%\
frequency-dependent coefficients) h

— |, is the equivalent path length (km) in the rain,
depending on the satellite elevation &, the
height of the rain zone h,, etc.

(the formulas are too cumbersome)

e
Marco Luise
8. Let it Snow— Atmospheric Impairments
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FREQUENCY (GHz)

Example: overall values of y,

As shown in this particular but
typical case, the attenuation
beyond Ka band is problematic

Some form of countermeasures are
needed (diversity) to increase
availability of the link

The relevance of the
countermeasures strongly depend
on the climatic zone (cdf of rain
rate)

Leads to an attenuation L, that is
substantially negligible below 3 GHz

Marco Luise
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Rain Map
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Longitude
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Washington, DC, 99% availability (i.e. worst 1% of the year)

In practice, a 110 <
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approach is 0 T ;8
taken: the value — - 30
of r N Elevation Angle (d
. . evation Angle (degrees)
is taken as the a3 70+
worst-case x% of = ) _
=
the (average) £ ol |
yeartogranta 2 - -7
40 -
(100-x)% L
g availability of the 30 -
8 link 20 - "
€ L S —
: . T —
£ 10
S
3 I[:)_--l__.'-‘l'.lllllIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
= 10 20 3 40 50 60 70 8 90 100 110
5 Frequency (GHz)

ip. Ingegneria dell’Informazione Marco Luise
niversity of Pisa, Italy 8. Let it Snow—- Atmospheric Impairments




GW Site Diversity

e |dea: Re-routing the traffic to an Earth station
which is experiencing less attenuation.

e Diversity gain calculated using empirical formulas
specified in the ITU-R P.618 recommendation as a
function of site distance d

Diversity Gain vs rain attenuation

20 T T ‘
—d=10Km, phy = 30
18 d = 20 Km, phy = 60 [
16 : ‘/,’ <
14 L e e — ///
) 12 - /
= 4
[ L . .
(-1 [0S E N N P>~ G N R Gateway with an elevation angle of 30 degrees
g . o~ suffers 15 dB of attenuation for a given
."/'/' \ . LK)
£ e availability.
£ 4 % —> .
S When there is a second gateway separated by
2 . . o .
2 7 10 km , for the same availability, there will be
E % s 10 15 20 2 s s 4  6.2dBreduction in the attenuation.
L2} rain attenuation [dB]

|
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It’s not over: Depolarization caused by rain

e |tis produced from a differential attenuation and phase shift caused by
non-spherical, possibly inclined (due to wind) raindrops

— Particularly relevant when polarization diversity is used to increase
spectral efficiency
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In general,
negligible for
“reasonable”

frequencies and
“reasonable”
elevation angles

Circular
polarization can be
considered
equivalent to 45-
degree linear

ip. Ingegneria dell’Informazione
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Gaseous Absorption, ITU-R P.676

G e :
| | L 1 1 T 117 |
5 E Altitude: 0 km (sea level)
— e e Different Gas Components of the
' Water Vapor Densiy: 7.5 gin’ | - atmosphere give different unit
10 . .« .
e e m s — attenuation coefficients (dB/km)
5 Caption |l 7 . . .
Dry Air (v, 711 ®* Notice the notorious absorption peak @
H,0 (v4) —_—
2 Total (y,+ vy) ﬂv/ 60 GHZ
| 7

Specific Attenuation, v, in dB/km

~

1l

1
" /117 um
g 5 // / \ Dry
2 Touwl [/ / / \4“’
[} /
Q ) //
'S 1= = =
=} 7
E 5 =
£
S
B 5 H,
= /
2 102
3 2 5 2 5 2 35
Frequency, f, in GHz ]

ip. Ingegneria dell’Informazione Marco Luise
niversity of Pisa, Italy 8. Let it Snow—- Atmospheric Impairments




Gaseous Absorption, ITU-R P.676

e The total attenuation is computed h: LI — _
according to the path traveld into ¢ 5 o
the atmosphere (depending on :
the elevation 6) .} juiiniowe |
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Fog/Clouds 1/2

* Fog
— |s made of water droplets, not water vapor
— Attenuation negligible at all frequencies < 100 GHz

e Clouds
— Water droplets again, not water vapor

— Are characterized by water content (g/m?3). The total attenuation is the
product of unit attenuation (dB/(g/m?3) ) times the total content of the
“water column” above the Earth station (kg/m?), divided of course by
sin(@) (elevation angle)

— The result is a substantially smaller attenuation than for rain, but in
general on longer time periods.
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Fog/Clouds 2/2

Attenuation significant only beyond Ku-band

15

Cloud Attenuation (dB)
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The lonosphere: Plasma gas

e The ionosphere is a region of ionized gas or plasma that extends from
about 15 km to more than 400 km altitude.

e |tisionized by solar radiation in the ultraviolet and x-ray frequency range
and contains free electrons and positive ions (actually, less than < 1%
molecules, mainly oxygen and nitrogen, are ionized)

e The free electrons affect electromagnetic wave propagation for satellite
communications — it is not just propagation in the vacuum any longer

e The effect is weak, but not negligible

e The main property of the ionosphere that affects propagation is the
electron concentration as a function of the altitude
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lonospheric Electron Concentration
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The main effects of this is i) Scintillation, and ii) Additional propagation delay

(%)
c
o
=
©
=
c
>
S
£
o
o
[
=
©
e
©
wv

ip. Ingegneria dell’Informazione Marco Luise
niversity of Pisa, Italy 8. Let it Snow—- Atmospheric Impairments




lonospheric Scintillation

e Rapid fluctuations of the amplitude and phase of the radiowave, caused by
electron density irregularities in the ionosphere

e Strongest at UHF (30-300 MHz), strikes up to 7 GHz

e s asource of fading/shadowing on the received signals - can be modeled with a
Rayleigh/Nakgami distribution with Doppler spread 0.1-1 Hz and duration (up to)

30 minutes o
L-band scintillation depth
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(Additional) lonospheric Group Delay

e The presence of electrons increases the refraction index of the ionosphere so that
the wave is retarded wrt propagation in the vacuum (thicker medium...)

e In terrestrial radio communication, this effect can be used to bend the path of the
wave that “bounces back” on the ionosphere and propagate well beyond the
horizon — this was used for long time in the HF band to realize intercontinental
radio communications

* |n GNSS, the distance from the satellite to the receiver (the range) r is evaluated by
measuring the “flight time” 7 of the radio signal from the satellite to the user
receiver as r=cr,i.e., assuming propagation in the vacuum. If the ionosphere
introduces an additional (unknown) delay, then the measurement is biased and
not accurate, and the positioning will result not accurate as well

e THREFORE, especially for GNSS (and we are anticipating topics we will deal with
later on in the course), we need to be able to estimate and possibly correct the
ionospheric delay: ionospheric bulletins (Space Weather Centers) !
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Computation of the lonospheric Delay

e The refraction index of the ionosphere depends on the frequency f of the wave,
and on the local electron content n_(r), where r is a generic point along the wave
propagation path. The expression is found to be (n, in electrons/cm? and fin Hz).

n(r) =1+ 40.3 r;e(r)

e The flight time from the satellite to the Earth is

EARTH EARTH EARTH EARTH
r= [ B st (1+ 10.3 Qe(r)st:£+4O'f’ 2] n,(nds
SAT v ( r) C SAT C SAT f C f C SAT

e We see that r/cis the vacuum-propagation delay, so that the ionospheric
(additional) delay z,,, is...

40.3 154" 40.3
iono — f2 o _‘- ne(r)ds — 2 |\IT
C sar c-f

T
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lono delay values

e N,is the Total Electron Count (TEC) along the radio path and it is the
parameter that actually determines how large the iono delay is.

e The equation is also formulated as

1 345 1345 \ 1o

iono —

e with N;expressed now in electrons /m2and frequency in GHz.

e Usual values of TEC are 1016- 1018 /m?

Satellite Communications

Dip. Ingegneria dell’Informazione Marco Luise
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Mean Values of VTEC (Vertical N;) across the Years
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lono Delay Chart
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e The nominal delay for a GALILEO satellite @ 24,000 km altitude is 80 ms — this
delay (smaller than 1 ps) may appear negligible but...
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lono Range Bias
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e It actually represent a bias in the sat-to-Earth range with values above — not
negligible at all if we whis to get to an accuracy of about 1 m !!!
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We can now get back to Link Budget with impairments...

+10dBm +14dBm (Amplifier: 15dB)

antenna antenna

Tx Rx
— bl thl ble ,
radio — i B radio

-0.5dB EIRP -182.2dB at 800km -0.5dB
4

+30dBm (-178.8dB at 350km)
Tx power -114.7dBm at 800km

-111.3 dB at 350km)
Rx power

dBm

-----------

L]

distance

Satellite Communications
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Adverse Propagation Conditions
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Adaptive/Variable Coding and Modulation (ACM/VCM)
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